JENBACHER

JENBACHER TYPE 4

An efficiency milestone

Based on the proven design concepts of types 3 and 6, the modern Jenbacher type 4 engines in the 800 to 1,560 kW power range are characterized by a high-power density and outstanding efficiency. The enhanced control and monitoring provide easy preventive maintenance, high reliability and availability.

Reference installations

J416 AGR Fenland Glasshouse, UK

Energy source	Engine type	Electrical output	Thermal output	Commissioning		
Pipeline gas	1 x J416 1 x J620 1 x J624	9 MW	11.2 MW	2022		

AGR's Fenland Glasshouse and energy center includes a combined heat and power (CHP) plant comprising three highefficiency Jenbacher engines that deliver electricity, while an exhaust cooling system delivers recovered CO₂ to help the plants grow. Additionally, an innovative 33 MWth heat pump system provides renewable hot water heating for the facility.

J420 Heslerhof, Germany

Energy source	Engine type	Electrical output	Thermal output	Commissioning		
Biogas	1 x J420	1.56 MW	1.8 MW	2021		

With the installation of a Jenbacher J420 engine and investments into a large buffer storage tank and a gas storage tank, the biogas plant at the Heslerhof farm in Germany was converted into a renewable storage power plant with flexible, power market-driven operation. The farm generates its own power, which is used to supply all the electricity it requires, and surplus power is fed into the grid at attractive feed-in tariffs at market rates.

J420 Chok Yuen Yong Industry Co., LTD, Thailand

Energy source	Engine type	Electrical output	Thermal output	Commissioning
Biogas	5 x J420	7.1 MW	5.2 MW	2012, 2017

Five Jenbacher J420 biogas-fueled engines produce more than enough electric power to supply Chok Yuen Yong Industry Co., LTD's tapioca starch factory. The excess electricity produced by the engines – about 1,000 kW – is supplied to the public grid to further reduce the facility's power costs.

J420 Hefei Xiaomiao Organic Waste Treatment Center Project, China

Energy source	Engine type	Electrical output	Thermal output	Commissioning		
Biogas	2 x J420	3 MW	1.2 MW	2021		

At the Hefei Xiaomiao Organic Waste Treatment Center Project, organic waste is pretreated and turned into biogas through anaerobic digestion at a nearly 67,000-square-meter facility. Two Jenbacher J420 biogas-fueled gensets power the facility and also supply power to the local grid.

Technical features

Feature	Description	Advantages
Heat recovery	Flexible arrangement of heat exchanger, two stage oil plate heat exchanger on demand	 High thermal efficiency, even at high and fluctuating return temperatures
Gas dosing valve	Electronically controlled gas dosing valve with high degree of control accuracy	 Very quick response time Rapid adjustment of air / gas ratio Large adjustable calorific value range
Four-valve cylinder head	Enhanced swirl and channel geometry using advanced calculation and simulation methods (CFD)	 Reduced charge-exchange losses Central spark-plug position resulting in optimal cooling and combustion conditions
Crack connecting rod	Applying a technology—tried and tested in the automotive industry—in our powerful stationary engines	 High dimensional stability and accuracy Reduced connecting rod bearing wear Easy to maintain

Technical data

Configuration	V 70
Bore (mm)	14
Stroke (mm)	18
Displacement / cylinder (li	t) 3.0
Speed (rpm)	1,800 / 1,200 (60 Hz 1,500 (50 Hz
Mean piston speed (m/s)	7.4 (1,200 1/mir 9.3 (1,500 1/mir 11.2 (1,800 1/mir
Scope of supply	Generator set, cogeneration system generator set / cogeneratio in containe
Applicable gas types	Natural gas, flare gas, bioga landfill gas, sewage gas, specie gases (e.g., coal mine gas, coke ga wood gas, pyrolysis gas
Engine type No. of cylinders Total displacement (lit)	J412 J416 J42 12 16 2 36.7 48.9 6

		Dimensions I x w x h (mm)
	J412	5,400 x 1,800 x 2,200
Generator set	J416	6,200 x 1,800 x 2,200
	J420	7,100 x 1,900 x 2,200
	J412	6,000 x 1,800 x 2,200
Cogeneration system	J416	6,700 x 1,800 x 2,200
	J420	7,100 x 1,800 x 2,200
	J412	12,200 x 3,000 x 2,700
Container 40-foot	J416	12,200 x 3,000 x 2,700
	J420	12,200 x 3,000 x 2,900
		Weights empty (kg)
	J412	11,200
Generator set	J416	13,500
	J420	17,200
	J412	11,800
Cogeneration system	J416	14,100
,	J420	17,800

Outputs and efficiencies

Natural gas 1,500 1/min 50 Hz				1,800 1/min 60 Hz				1,200 1/min 60 Hz								
NOx <	Туре	Pel (kW)¹Pth (kW))² ηel (%)¹	ηth (%))² ηtot (%)	Pel (kW)	Pth (kW)² ηel (%)¹	ηth (%)	²ηtot (%)	Pel (kW)	¹ Pth(kW)	²ηel (%)¹	ηth (%)	²ηtot (%)
	J412	901	928	43.4	44.6	88.0	851	960	41.6	46.9	88.5	630	618	42.8	41.9	84.7
	J416	1,202	1,244	43.4	44.9	88.3	1,141	1,281	41.8	46.9	88.7	846	824	43.0	41.9	85.0
500 mg/m ³ _N	J416	1,000	1,029	43.3	44.6	87.9										
	J420	1,561	1,656	43.7	46.3	90.0	1,560	1,723	42.7	47.2	89.9	1,057	1,029	43.0	41.9	84.9
	J420	1,561	1,833	42.4	49.7	92.1										
	J412	901	967	42.1	45.2	87.4	851	1,003	40.6	47.9	88.5	630	641	41.8	42.5	84.4
	J416	1,202	1,285	42.3	45.2	87.5	1,141	1,338	40.8	47.9	88.7	846	856	42.1	42.6	84.7
250 mg/m ³ _N	J416	1,000	1,046	42.7	44.7	87.4										
	J420	1,502	1,606	42.7	45.6	88.3	1,560	1,775	41.8	47.6	89.4	1,057	1,085	41.7	42.8	84.6
	J420	1,561	1,906	41.4	50.5	91.9										
Diamera		1.500.1/	main LEO	11-			1 000 1/-	-: L CO								

	J420	1,561	1,906	41.4	50.5	91.9						
Biogas		1,500 1/r	min 50 I	Ηz		1,800 1/min 60 Hz						
NOx <	Туре	Pel (kW)	1 Pth (kW)	² ηel (%) ¹	ηth (%) ²	ηtot (%)	Pel (kW)	1 Pth (kW)2	ηel (%) ¹	ηth (%) ²	ηtot (%)	
	J412	749	750	42.1	42.2	84.3						
	J412	901	919	42.6	43.5	86.1	851	916	41.1	44.2	85.3	
500 mg/m ³ _N	J412	934	914	43.3	42.3	85.6						
	J416	999	993	42.3	42.1	84.4						
	J416	1,202	1,221	42.8	43.5	86.2	1,141	1,220	41.3	44.2	85.5	
	J416	1,248	1,225	43.3	42.4	85.7						
	J420	1,498	1,524	42.7	43.5	86.2	1,564	1,651	42.1	44.5	86.6	
	J420	1,561	1,548	43.3	42.9	86.2						
	J412	889	922	42.0	43.6	85.6	851	933	40.4	44.3	84.7	
250 mg/m ³ _N	J416	1,190	1,229	42.2	43.5	85.7	1,141	1,237	40.6	44.0	84.7	
	J420	1,487	1,537	42.1	43.6	85.7	1,564	1,682	41.4	44.6	86.0	

¹ Technical data according to ISO 3046 ² Total heat output with a tolerance of +/- 8%, exhaust gas outlet temperature 120°C, for biogas gas outlet temperature 180°C

All data according to full load and subject to technical development and modification. Further engine versions available on request.

I JB-1 23 004-EN

In general, "Ready for H_2 " Jenbacher units can be converted to operate on up to 100% hydrogen in the future. Details on the cost and timeline for a future conversion may vary and need to be clarified individually.

© Copyright 2023 INNIO. Information provided is subject to change without notice.

INNIO, INNIO, Jenbacher, are trademarks in the European Union or elsewhere owned by INNIO Jenbacher GmbH & Co OG or one of its affiliates. All other trademarks and company names are property of their respective owners.

Jenbacher is part of the INNIO Group

